نوع مقاله : مقاله پژوهشی
نویسندگان
^{1} دانشجوی دکتری، گروه روانشناسی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
^{2} استاد، گروه روانشناسی تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه تبریز، تبریز، ایران، (نویسنده مسئول) serajiyan@yahoo.com
^{3} دانشیار، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدنی، تبریز، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Abstract
Introduction: People with mathematical learning disorders have defects in information regulation, visual and auditory perception, memory and attention. Executive functions and visualspatial ability are highlevel cognitive actions that play the most important role in directing behavior, selfregulation, and academic preparation. The aim of the present study was to compare executive functions and spatial somatosensory ability in normal students and those with math learning disorders.
Research Method: The research method was causalcomparative. The statistical population of the research included all male students between the ages of 9 and 12 in Tabriz city in the academic year of 20222023. The research sample consisted of 120 students (63 normal students and 57 students with math learning disorders) who were selected by available sampling method. The research tools included Barclay's executive functions deficits questionnaire, and Carnoldi et al, visual spatial ability tests. Data were analyzed with SPSS24 software and multivariate analysis of variance, ttest and oneway analysis of variance.
Findings: The results of the research showed that there is a significant difference between normal students and those with math learning disorders in executive functions (P<0.001) and spatial somatosensory ability (P<0.05).
Conclusion: As a result, normal students had better executive functions and spatial somatosensory ability. So, designing and implementing skill programs for executive functions and spatial somatosensory ability for students with math learning disorders seems necessary.
کلیدواژهها [English]
Comparison of Executive Functions and Spatial Somatosensory Ability in Normal Students and Students with Math Learning Disorders
Serajian Maralan H.,[1] Vahedi SH.,[2]* Chalabianloo GH.[3]
[1]  Ph.D Student, Department of Psychology, Tabriz Branch, Islamic Azad University, Tabriz, Iran helenseraj61@gmail.com
[2]  Professor, Department of Educational Psychology, Faculty of Educational Sciences and Psychology, Tabriz University, Tabriz, Iran, corresponding author, serajiyan@yahoo.com
[3]  Associate Professor, Department of Psychology, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
© 2020 The Author(s). This work is published by family and health as an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/bync/4.0/). Noncommercial uses of the work are permitted, provided the original work is properly cited.
Abstract
Introduction: People with mathematical learning disorders have defects in information regulation, visual and auditory perception, memory and attention. Executive functions and visualspatial ability are highlevel cognitive actions that play the most important role in directing behavior, selfregulation, and academic preparation. The aim of the present study was to compare executive functions and spatial somatosensory ability in normal students and those with math learning disorders.
Research Method: The research method was causalcomparative. The statistical population of the research included all male students between the ages of 9 and 12 in Tabriz city in the academic year of 20222023. The research sample consisted of 120 students (63 normal students and 57 students with math learning disorders) who were selected by available sampling method. The research tools included Barclay's executive functions deficits questionnaire, and Carnoldi et al, visual spatial ability tests. Data were analyzed with SPSS24 software and multivariate analysis of variance, ttest and oneway analysis of variance.
Findings: The results of the research showed that there is a significant difference between normal students and those with math learning disorders in executive functions (P<0.001) and spatial somatosensory ability (P<0.05).
Conclusion: As a result, normal students had better executive functions and spatial somatosensory ability. So, designing and implementing skill programs for executive functions and spatial somatosensory ability for students with math learning disorders seems necessary.
Keywords: executive functions, mathematical learning disorder, normal children, spatial somatosensory ability
Received: 3/October/2022 Accepted: 12/December/2022
Citation: Serajian Maralan H., Vahedi SH., Chalabianloo GH. Comparison of Executive Functions and Spatial Somatosensory Ability in Normal Students and Students with Math Learning Disorders, Family and health, 2022; 12(3): 154170 
Introduction:
Children with learning disabilities are a group of exceptional children who have normal appearance and normal and sometimes higher intelligence. These children may have problems in several subjects or only in one subject (1) and in the face of successive academic failures, they gradually experience emotional disturbances and antisocial behaviors, which will lead to other problems (2). The United States Department of Education provided a definition of specific learning disability in the revised Individuals with Disabilities Education Act (IDEA). According to this law, the term children with learning disabilities refers to children who "have a disorder in one or more of the basic psychological processes such as comprehension, use of spoken and written language, and this disorder may manifest itself as an inability to hear, think, speak, read, write, spell, or perform mathematical calculations." These disorders include features such as cognitive disabilities, brain damage, mild brain disorders, dyslexia, and developmental (developmental) aphasia" (3). This definition does not include children who have learning problems due to visual, hearing or movement disabilities, mental retardation, emotional disorders or environmental, cultural or economic deprivations. (4). Learning disorders are classified into three main categories, which include "reading disorder, writing disorder, math disorder" (5). In math learning disorder, the student generally has deficiencies in three major skills, which are: (1) language skills (such as understanding and naming mathematical terms, understanding and naming mathematical actions and concepts and converting them into symbols); (2) perceptual skills (such as recognizing and reading numerical symbols or arithmetic signs and grouping figures) (6); (3) Mathematical skills (such as correctly copying numbers and memorizing numbers) (Ahadi and Kakavand, 2018). In general, children with math problems have problems in learning calculation processes and math applications (7).
The diagnosis of mathematical learning disorder is raised when the child's mathematical reasoning or calculation skills are significantly lower than expected for his age, intellectual ability and education level for at least 6 months, even with the presence of auxiliary interventions. To achieve mathematical skills, various skills are needed, which include: language skills, conceptual skills, and calculation skills (8). In the field of mathematical learning disorder, related challenges, cognitive processes and weakness in various skills have always been the focus of researchers. Executive functions can be mentioned among cognitive processes and skills.
Executive functions are a set of processes that are responsible for directing, guiding and managing cognitive, emotional and behavioral functions, especially during activities and solving new problems (9). Executive functions, as an integrated guiding system, regulate the control of actions, and spatial visual functions, memory, emotional experience, and motor skills serve to achieve a certain goal. In other words, executive function skills allow a person to understand stimuli from his environment, adaptive response, flexibility in changing direction, predicting future goals, considering consequences and responding in an integrated manner or correct judgment (10). Executive functions include: inhibition and control of stimuli, working memory, flexibility, cognition, planning and organization. Studies show that executive functions are selfregulating and any defect in the development of executive functions can lead to disruption in planning, memorization of tasks and memory (11). Also, a group of researchers have found out by examining the existing history that a set of factors cause the experience of difficulty and weakness in learning math skills to be so common. The first factor is the existence of several different components in mathematics (for example, calculation, geometry, problem solving) and the prerequisites for performing these tasks change depending on each of these different components (12). The second factor is that performing mathematical tasks requires the use of executive functions such as phonological (verbal) memory, working memory, visualspatial skills, and knowledge about work methods (13). The findings of Ghasemi Tos et al.'s research (14) indicate that there is a significant difference between the executive functions of children with specific learning disorders and normal children. In another research, the findings indicate that specific learning disorder has a positive relationship with difficulty in executive functions, and the greater the severity of the disorder, the greater the difficulty in executive functions (15).
Learning is a stepbystep process that is based on the successful completion of learning tasks in order to acquire and collect knowledge. Children with working memory problems often fail in the classroom; Because the content load of working memory for each task is more than their capacity. When the working memory system fails, children forget what they were doing and this can lead to inattention. Finally, this leads to frequent loss of learning opportunities and as a result little academic progress (16). The strong relationship between working memory problems and a wide range of learning disabilities suggests that working memory should be evaluated whenever a child is referred with a possible learning disability.
Visualspatial processing of working memory is one of the other important psychological variables in examining the areas of developmental insufficiency, including math learning disorder. Visualspatial processing is a complex process that includes the student's ability to visualize objects mentally, the ability to recognize the difference between objects, orientation, left and right recognition, the ability to recognize relationships between objects in space (17). Visualspatial perception is a process that is carried out in the right hemisphere of the brain and causes recognition of the state of objects and shapes in relation to each other, as well as relation to each other and relation to the observer. This skill helps the student in recognizing the sequence of letters and numbers in a word or the sequence of words in a sentence (18). Defects in visualspatial skills can manifest themselves in mathematics in different ways (19); For example, the inability to interpret and use the spatial organization of presented mathematical materials (such as numbers in the decimal place, powers and geometric shapes), determining the location of numbers on the number axis, identifying figures and other mathematical symbols, written calculations, especially those in which spatial value is important (such as lending and transferring in calculations), controlling irrelevant visualspatial information, visualizing and analyzing geometric shapes, interpreting diagrams, understanding and interpreting mathematical information presented in visualspatial form. (like tables), memorizing and working with formulas (20).
Despite considerable evidence on the relationship between numerical and spatial mental representations, little attention has been paid to the role of visualspatial memory in mathematics. At the same time, the evidences that exist in this field are not in agreement with each other. Studies have found evidence in support of the relationship between mathematical calculations and visualspatial working memory performance. For example, Simmons, Willis and Adams (21) found in a study that in young children, visualspatial working memory causes dispersion of judgments about symbolic values and suggested that it may be especially important in written plural problems. On the other hand, Noel, Desert, Abran and Seron reached the conclusion in their research that only the phonological similarity between numbers interferes with the individual's performance in addition problems; Therefore, they concluded that verbal working memory is more important than visualspatial working memory in the storage of media information. Lomax and HazeWagon (22) also found a small role for visualspatial working memory; That is, only when the information was presented visually. However, there are many reasons that visualspatial working memory may play an important role in calculations. First, several studies have observed a relationship between math performance and spatial skills. Second, the semantic information in multidigit numbers is encoded spatially (for example, the information about the position of the numbers, when dealing with numbers greater than 9). As a result, the relationship between visualspatial memory and computation may be particularly important for multidigit computing. Finally, research on the ways that adults and children represent and process numbers highlights the spatial nature of numerical representations (23).
Based on what was stated, research evidence indicates that visualspatial skill is low in people with math learning disorder and its improvement is effective in solving the problems of math learning disorder (24). Also, in their research, Mahdavi Najmabadi, Kadivar, Arjamandania and Pushneh (25) emphasized the mediating role of working memory in visual spatial prediction based on mathematical selfefficacy. Keshavarz and Kakavand (26) concluded that mental retention ability, visualspatial skill, and numerical processing speed are components that are more common in groups with math disorders. These weaknesses are not related to people's intelligence, which is related to failure in executive actions, specifically active memory; Therefore, it can be said that these components are among the distinguishing features of this group of students with special learning disabilities that should be paid special attention to when identifying and planning treatment. The review of research studies related to the field of disorders shows that executive functions and visualspatial skills in children with attention deficit and autism have been considered; But these variables and their comparison have been neglected in the case of children with specific learning disorders, especially math disorders; Therefore, the present study was conducted with the aim of comparing executive functions and visualspatial skills in normal children and children with math learning disorders.
Research method:
The design of the current research was descriptive and causalcomparative. The statistical population of this study consisted of all male students in the age range of 9 to 12 years in the academic year of 14021401 in Tabriz. Using available sampling, 120 people (63 normal students and 57 students with math learning disorders) were selected. The entry criteria for students with a satisfactory disorder include: 1) having a math learning disorder with a score of less than 58 as a cutoff point in the KIMAT test, 2) a diagnostic interview for a learning disorder based on DSMV; 3) having a low score (less than 95) in the general intelligence of the Wechsler test; 4) completion of the written consent form by the parents and the child's desire to participate in the study; 5) not having obvious physical and mental disability or illness; 6) Nonparticipation of the child in the special training course was selected. Then normal students who were equal to this group of students in other conditions except special learning disorder were selected to compare the variables. In order to collect data, the following tools were used:
Barkley's Questionnaire of Executive Function Deficits of Students and Adolescents: The long form of the Questionnaire of Executive Function Deficits of Children and Adolescents was designed by Barkley (27) with the aim of representing executive functions in nonclinical and clinical populations, especially children and adolescents. The said scale includes 70 items, which are graded based on a 4point Likert scale from never (=1) to always (=4). This tool includes five subscales, which measure the executive functions of time selfregulation (13 questions), organization and problem solving (14 questions), selfcontrol and inhibition (12 questions), selfmotivation (14 questions), and selfregulation of emotion (16 questions). Scores between 70 and 140 indicate low executive functioning impairment, scores between 140 and 175 indicate moderate executive functioning impairment and scores above 175 indicate strong executive functioning impairment (Barclay, 2012). The validity of the total scale with Cronbach's alpha of 0.99 and subtypes of 0.74 to 0.33 has been reported by Barkley (27). Soltani et al. (28) conducted a research with the aim of determining the validity and reliability of Barclay students' and adolescents' executive functions questionnaire. The results showed that the questionnaire has good reliability and validity in Iranian society and can be used in various fields of research in Iran. In the research of Mohabbate Bahar et al. (29), the alpha coefficients for the whole scale of executive functions and the subcomponents of time selfmanagement, selforganization/problem solving, selfcontrol/inhibition, selfmotivation and emotional selfdiscipline are equal to 0.90, 0.85, 0.82, 0.78, 0.76 and 0.72, respectively, which indicate the reliability of the executive functions questionnaire. The validity results of the test in all subscales were reported as 0.79.
Visualspatial test: The visualspatial working memory test was designed by Carnoldi, Rigonio Trischoldi (30) and is known as the working memory matrix. In this test, a 3 x 3 matrix is used in which only the left square of the lower part is red. The red square is considered as the starting point. Subjects were asked to look at the matrix carefully and keep it in their memory. Then they are told to listen carefully to the commands given by the examiner in the form of left, right, down, and up, and based on that, move the red house inside the matrix, and at the end of the commands that require movement in the matrix, show the house where the red house is now moved to. This test is performed three times and each time consists of 6 commands. The score of each subject is calculated based on success in these steps. 1 point is considered for each successful step. In total, the subject can score from 0 to 3. The reliability coefficient of the test based on Cronbach's alpha method was obtained by Karnoldi and Veggia (31) as 0.78. Also, the reliability of this test with the testretest method for children aged 4.5 to 11.5 has been reported as 0.83. In Keshavarz and Kakavand's research (26), the validity of this test was obtained using Cronbach's alpha coefficient of 0.79.
After determining the number of samples, with permission from Tabriz Department of Education, the said schools were visited and the necessary information was given to the students regarding the questionnaires, the objectives of the research and how to answer the questions, and finally the questionnaires were provided to the students. In order to ensure the confidentiality of the students' information, their details were coded. After collecting information, SPSS24 software and descriptive and inferential statistics, Wilks's lambda test, multivariate analysis of variance, and oneway analysis of variance test were used to analyze the data.
Findings:
The mean and standard deviation of the scores of normal children and those with math learning disorders in variables of executive function and visuospatial skill are shown in table (1).
Table 1. Mean and standard deviation of executive function defects and visualspatial skills of people
Variable 
Group 
Mean 
SD 
Selfregulation of time 
Disorder group 
33.80 
3.002 
normal group 
28.20 
3.48 

total score 
31.3 
3.241 

Organization and problem solving 
Disorder group 
33.95 
4.718 
normal group 
26.90 
6.26 

total score 
30.415 
5.517 

Selfcontrol and inhibition 
Disorder group 
32.85 
5.733 
normal group 
25.30 
4.42 

total score 
29.085 
5.076 

Selfmotivation 
Disorder group 
38.55 
4.968 
normal group 
30.01 
4.449 

total score 
34.25 
4.712 

Emotional selfregulation 
Disorder group 
49.25 
4.723 
normal group 
39.05 
3.203 

total score 
44.18 
3.971 

Impairment of executive functions (total) 
Disorder group 
188.4 
23.144 
normal group 
149.55 
22.58 

total score 
169.23 
22.871 

Visualspatial skill 
Disorder group 
1.05 
0.686 
normal group 
1.55 
0.759 

total score 
1.32 
0.724 
In order to investigate the first hypothesis of the research, due to the fact that the variable of executive functions has five components, multivariate variance analysis was used. In order to choose the appropriate statistical tests for the analysis of the collected data, it is necessary to evaluate the type of distribution of the variables in terms of the normality of their distribution. Also, to check the assumption of homogeneity of variances in the studied groups, which is another assumption of variance analysis, Lon's test was used, the results of which are given in table (2).
Table 2. Results of KolmogorovSmirnov test and homogeneity of variance by groups
Variable 
Normal group 
Disorder group 
Homogeneity of variance 

Selfregulation of time 
KS statistic 
Sig 
KS statistic 
Sig 
Loon statistics 
Sig 
Organization and problem solving 
0.86 
0.44 
0.67 
0.76 
2.72 
0.12 
Selfcontrol and inhibition 
0.66 
0.76 
0.70 
0.71 
1.32 
0.23 
Selfmotivation 
0.74 
0.63 
1.189 
0.11 
1.08 
0.30 
Emotional selfregulation 
0.79 
0.55 
0.86 
0.44 
2.61 
0.15 
Impairment of executive functions (total) 
0.89 
0.40 
0.64 
0.79 
1.14 
0.41 
Visualspatial skill 
0.92 
0.51 
0.81 
0.63 
3.28 
0.76 
Based on the results listed in table (2), the distribution of scores of components of executive functions and visual skill in two groups is not significant at the 0.05 level; Therefore, with 95% confidence, we can conclude that the distribution of scores in all variables in two groups of normal and disordered students is normal. As a result, the parametric tests used for the desired variables in this research are appropriate. Based on table (2), the results of Lon's test are given to check the homogeneity of variances. According to the results listed in the table, the similarity of the variances of the two groups in the scores of executive functions and its components and visuospatial skill is not significant at the 95% level. In other words, considering that the nonsignificance of Lon's test means confirming the null hypothesis, it can be concluded with 95% confidence that the variances of the two groups of normal and impaired students in the scores of the two variables are the same. After establishing the assumptions of normality and homogeneity, multivariate analysis of variance was used to compare the executive functions and its components between the two groups.
Table 3. Results of multivariate analysis of variance
Effect 
Tests 
Value 
F 
Degree of freedom effect 
Error degree of freedom 
Sig 
Group 
Pillai effect

0.248 
16.099 
5 
114 
0.001 
Wilks Lambda 
0.752 
16.099 
5 
114 
0.001 

Hoteling's work

0.330 
16.099 
5 
114 
0.001 

The largest Roy root 
0.330 
16.099 
5 
114 
0.001 
As Table (3) shows, the obtained F ratio is significant at the level (P<0.05). As a result, the groups have a significant difference in at least one of the dependent variables (executive functions and its components). But this statistic does not show which of the dependent variables has a significant difference. Therefore, after that, it was investigated that each of the components of executive functions, including emotional selfregulation, organization and problem solving, selfcontrol and inhibition, selfmotivation and emotional selfregulation, and the total score were affected separately by the independent variable (groups). In the following table (4) the result of the analysis of variance between subjects is given.
Table 4. Results of multivariate analysis of variance between subjects
Source of changes 
The dependent variable 
sum of squares 
Degrees of freedom 
mean square 
F 
Sig 
Group 
Selfregulation of time 
0.04 
10.98 
557.78 
1 
557.78 
Organization and problem solving 
0.037 
12.04 
502.455 
1 
502.455 

Selfcontrol and inhibition 
0.001 
28.06 
397.321 
1 
397.321 

Selfmotivation 
0.001 
40.053 
242.23 
1 
242.23 

Emotional selfregulation 
0.001 
38.065 
435.125 
1 
435.125 

Impairment of executive functions (total) 
0.001 
60,726 
6797.78 
1 
6797.78 

Error 
Selfregulation of time 
33.640 
117 
3935.900 


Organization and problem solving 
22.337 
117 
2613.510 



Selfcontrol and inhibition 
18.562 
117 
2171.761 



Selfmotivation 
8.344 
117 
976.320 



Emotional selfregulation 
18.384 
117 
2151.030 



Impairment of executive functions (total) 
189.441 
117 
22164.400 


As can be seen in table (4), the result of the multivariate analysis of variance for the components of time selfregulation and organization and problem solving between groups was significant at the P<0.05 level, and for the other components, it is significant at the level of less than 0.001; Therefore, the hypothesis of the existence of a significant difference between the scores of executive functions of two groups of normal students and those with mathematical learning disorders is confirmed. In order to investigate the next hypothesis of the research, considering that the visualspatial skill variable does not have a component, ttest and oneway analysis of variance (ANOVA) between groups were used. For this purpose, the ttest was first performed.
Table 5. The results of the ttest and checking the homogeneity of variance
Variable 
Leon statics 
Sig 
Degree of freedom 1 
Degree of freedom 2 
t 
Sig 
Visualspatial skill 
0.04 
0.95 
1 
118 
4.089 
0.001 
According to the results of table (5), the t value of 4.089 is at a significant level of less than 0.001 outside the range of +2.58 and 2.58; Therefore, there is a difference between the two groups in terms of visualspatial skills. Considering that the value of Lon's statistic is at a significant level of more than 0.05, therefore, the hypothesis of homogeneity is established and oneway analysis of variance test can be used.
Table 6. Results of variance analysis of visualspatial skill variable
Visualspatial skill 
Sum of mean 
Degree of freedom 
mean square 
F 
Sig 
between groups 
392.217 
1 
392.217 
5.304 
0.001 
Intergroup

8724.834 
118 
73.939 


Total 
9117.051 
119 



As can be seen in table (6), the result of the oneway analysis of variance between groups for the visualspatial skill variable (F=5.304) is significant between the groups at the P < 0.01 level, so the research hypothesis is confirmed and there is a significant difference between the two groups of normal students and those with math learning disorders.
Discussion and conclusion:
The purpose of this research was to determine the difference between executive functions and visualspatial skills between normal students and students with math learning disorders. The obtained results showed that the executive functions and its components are significantly different between the two groups. This finding was in line with the study of Ghasemi Tous et al. (14). Executive functions are skills that help a person to decide what kind of activities or goals should be considered, which ones to choose, and how to organize and plan behaviors. The existence of defects in visual perception and working memory in children with learning disabilities, especially math disorders, is the main reason for their problems; Because usually such students have a disorder in processing skills; Visual information is used to examine and understand the shape as well as visual symbols such as letters and numbers, which is the basis of word recognition and mathematical operations based on these skills (32). These skills are so important that weakness and some kind of disorder in them causes learning problems. Considering the importance of executive functions and several theories that have been proposed in this field, researchers consider the empowerment of these functions to be effective. Reynolds and Horton believe that executive functions are different from general knowledge. They suggested that executive functions represent the capacity to plan, do things, and implement adaptive actions, while the task of general knowledge is to preserve and maintain a set of organized objective facts. On the other hand, children who perform mathematical tasks use methods for mental representations of numbers that rely on executive functions. For example, Hoggs has come to the conclusion that young children can answer questions better when simple addition and subtraction problems are presented in the form of tangible and concrete situations than when they are presented in the form of abstract numbers. Holmes and Adams have also supported this idea and suggested that executive functions may provide a mental working space for the child, which allows him to represent abstract problems in an objective way and with more manipulability in his mind.
The ability to plan and organize as one of the most important executive functions and excellent activities of the brain, both in terms of having a role in performing daily life activities and in terms of its role in coordinating other functions to achieve the goal, has been the focus of various researchers. Lezak, Howison and Loring (34) consider this executive function as the ability to identify and organize the steps and elements required to carry out an intention or achieve a goal. Since the ability to plan and organize is part of the high functions of the prefrontal cortex, it is believed that the damage or disorder in the prefrontal areas and some areas of the subcortex of the brain is significantly related to the student's ability to plan and organize.
In addition, flexibility means the ability to present knowledge in multiple conceptual forms, from different perspectives, and then the ability to apply them based on the same conceptual and form diversity in order to understand or solve problems and create new knowledge. When learners clearly observe how knowledge is transferred in the form of a valid thematic synthesis within different content areas, they apply that knowledge in multiple areas. New theories look at flexibility as a multidimensional structure that includes fundamental variables such as temperament, personality and specific skills such as problem solving skills. These skills allow a person to make a favorable adaptation to traumatic or traumatic life events; Therefore, although the first wave of research in the field of flexibility focused more on understanding the characteristics of flexible people; But the second wave was based on understanding the processes through which people could successfully show positive adaptation to stress and traumatic events (34). Finally, processing speed can be considered as the speed and ability of a person to perform simple cognitive tasks. D'Amico and Pasolonghi (35) found in a research that fourth grade students who had math learning problems had poor performance in terms of speed of activation of numerical and nonnumerical information from working memory. Fachs and colleagues (36) also found in a research that processing speed is an important predictive factor of calculation ability, which is measured by tasks including the rules of addition and subtraction of numbers. However, processing speed and working/shortterm memory are two separate systems (37).
Another finding of the research showed that there is a difference between normal students and students with math learning disorders in visualspatial skills of working memory. In checking the alignment of this result with previous studies, Bishara's study (38) and Dergas, Mitsia and Skins (39) showed that children who have problems in mathematics; They usually have problems with spatial perception. For example, they get confused in understanding the concepts of up, down, left, right, below, back and front, etc., and these problems create a disturbance in the mental image of the number system and cause these children to not be able to recognize the distance between the numbers and their respective places. The cause of disability in visualspatial skill for students with math learning disorder is caused by damage to the parietal lip (40); In addition to visualspatial ability, damage to the parietal lobe also disrupts shortterm memory and working memory, and left temporalparietal damage seriously disrupts the ability to recall number sequences (41) and these areas mainly play a role in maintaining verbal materials, and the right temporalparietal areas play a role in maintaining nonverbal materials such as spatial status. Researches have also attributed a complementary role to the temporal and temporal parts in memory (4). Research evidence shows that working memory performance is a source of information that can differentiate between students with learning disabilities and those who are slow learners. Of course, working memory scores alone are not enough for diagnosis, other assessment information should also be considered. In addition, it should be taken into account that there are often several causal factors for learning disorders and the profile of cognitive processing of people is different. Working memory deficits are rarely the only deficits found in people with learning disabilities. For example, individuals with a basic impairment in reading skills may also have concurrent deficits in phonological processing or longterm memory. People with lower overall cognitive ability may also have poor working memory. What distinguishes people with learning disorders is that working memory problems are only one of their defects (42).
Some researchers believe that inherent limitations of working memory are the primary cause of learning disorders. Nevertheless, since many of the researches conducted on working memory and learning disorders are correlational, it is not possible to infer causation from them. An alternative explanation is that working memory deficits are the result of failure in learning, rather than the primary cause (43). Some specialists also claim that working memory problems are secondary to other cognitive processing problems. Such discussions are in line with McDonald's and Christensen's point of view, who believe that working memory is a subskill among different cognitive domains, such as language. Researches also indicate the role of the frontal lobe in the use of memory (44). In a research, Patel et al showed that the temporal and parietal regions are more active in the auditory working memory test in dyslexics. A low score in calculating and reading numbers is a reflection of poor attention or sequence (45). Computational neuroscience provides a mathematical framework to facilitate the study of mechanisms involved in brain function, including visual attention, memory, and behavior control by rewarding mechanisms. Also, it helps to analyze and analyze neuronal networks at each neuron level, compound and explosive, and also to many aspects of brain function, from the activities of individual neurons to the effects of medicinal agents in the synapse and tissue flow. Neural nodes that help to integrate many aspects of visual recognition and attention functions that are understandable and can be modeled (46). This approach describes explicit and clear predictions at all levels that can be tested. In this theory, the expansion and improvement of understanding is one of its basic and dynamic processes. This type of basic analysis and analysis helps humans to have a deep understanding of neuroscience and how the brain performs complex tasks (46). On the other hand, children encountering uncontrollable events such as reducing cognitive activities such as reducing working memory capacity and visualspatial skills, disrupting attention and inhibiting information processing, and reduces the individual's motivation to make new hypotheses to solve the problem. Also, the problems that children with learning disorders have in visualspatial skills lead to the poor performance of these children in mathematics lessons, and this continuous and successive lack of success in these children causes the growth of their negative feelings and attitudes towards this lesson (47); Therefore, teachers and those involved in education can indirectly reduce and finally eliminate the negative attitude towards mathematics by creating solutions to strengthen various executive functions, including neuropsychological interventions. Not being under the control of educational and cultural factors affecting executive functions and visualspatial skills was one of the limitations of the present study. It is suggested that other factors and variables affecting executive functions and visualspatial skills should be researched in relation to these structures.
© 2020 The Author(s). This work is published by family and health as an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/bync/4.0/). Noncommercial uses of the work are permitted, provided the original work is properly cited.